FORECASTING DATA INFLASI YEARS ON YEARS KOTA BATAM TAHUN 2017-2020
Keywords:
Inflation; ARIMA; Box-JenkinsAbstract
Forecasting year-to-year inflation data and minimizing the occurrence of a decrease in CPI/Inflation so that there are no changes in the price index within the specified time. The method used to use forecasting techniques is ARIMA (Autoregressive Integrated Moving Average). ARIMA is also often called the Jenkins time series method. The data used is secondary data obtained from the Central Statistics Agency, namely year-to-year inflation data for 2017-2020. The results obtained from the 10 time series models used in forecasting the infallible value of the city of Batam for 2017-2020 are ARIMA (2,2,1) which has the smallest MS value of 0.05708 so it is used in forecasting, as well as an increase in inflation
References
Greenidge, K., & Grosvenor, T. (2010). Forecasting Non-Performing Loans in Barbados. Business, Finance & Economics In Emerging Economies Vol 5 No 1, 79-108
Badan Pusat Statistik Batam (batamkota.bps.go.id), diakses tanggal 16 November 2022.
Sunarti. 2009. Tugas Akhir Statistika Terapan dan Komputasi Fakultas Matematika Ilmu Pengetahuan Alam Universitas Negeri Semarang.
Irawan, Nur. 2006. Mengelola Data Statistika Dengan Mudah Menggunakan Minitab. Yogyakarta: Andi Office.
Andini, T. D., & Auristandi, P. (2016). Peramalan Jumlah Stok Alat Tulis Kantor Di UD ACHMAD JAYA Menggunakan Metode Double Exponential Smoothing. Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10 No.1.
Institut Teknologi Batam. 2022. Buku Panduan Penulisan Laporan Kerja Praktek/Magang (KP) Mahasiswa Institut Teknologi Batam
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 A'rsyil Majiid
This work is licensed under a Creative Commons Attribution 4.0 International License.