Markov Chain Analysis in Predicting Consumer Price Index for the Food, Beverage and Tobacco Sector in Jambi City

Authors

  • gusmi kholijah universitas jambi
  • Fitriyani Fitriyani Universitas Jambi

Keywords:

Consumer Price Index, Markov Chain, Probability

Abstract

The Consumer Price Index (CPI) is an economic indicator that can provide information regarding developments in prices of goods/services. CPI is one of the factors that can measure inflation. According to the information provided, inflation pressure is influenced by the food, beverage and tobacco sectors and is one of the mainstays in providing a major contribution to economic growth. Every month the CPI can increase or decrease so data from previous times is used to see predictions for the present so time series data is used. Prediction of CPI time series data can use one of the mathematical techniques, namely Markov chain analysis. Markov chain is a method that studies the properties of a variable in the present in an effort to estimate the properties of the same variable in the future, therefore Markov chain analysis is suitable for use in predicting CPI. In this research, it was applied to CPI data for January 2018 to June 2022. After conducting the analysis, it was concluded that in the following months the opportunity for CPI in categories above the basic price was greater than the opportunity above the basic price. So it is hoped that the results of this analysis can help the government stabilize the CPI in the Food, Miniman and Tobacco sectors

 

References

Badan Pusat Statistik Provinsi Jambi, Indeks Harga Konsumen Kota Jambi 2018. Jambi: Badan Pusat Statistik Provinsi Jambi, 2019.

Badan Pusat Statistik, Ringkasan Eksekutif Indeks Harga Konsumen Kota Jambi Triwulan II 2022. Jambi: Badan Pusat Statistik Provinsi Jambi, 2022.

L. Debora, “Analisis Perubahan Jumlah Pasien COVID-19 di Provinsi Jambi Menggunakan Metode Rantai Markov,” Universitas Jambi, Jambi, 2021.

T. , A. Nurman, I. Syata, and C. , D. Wulandari, “Prediksi Hasil Panen Kopi Di Sulawesi Menggunakan Analisis Rantai Markov,” Jurnal Matematika dan Statistika serta Aplikasinya, vol. 9, no. 2, pp. 120–127, 2021.

E. Baco, A. Sauddin, and N. Bakri, “Analisis Persaingan Industri Televisi Berbayar Menggunakan Rantai Markov (Studi Kasus: PT. Indonusa Telemedia (Transvision) Versus Televisi Berbayar Lainnya di Kota Makassar Tahun 2017,” Jurnal MSA (Matematika dan Statistika serta Aplikasinya, pp. 18–19, 2019.

H. Sutarto, I. Gunawan, and J. Dalle, “Statistika Inferensial Teori dan Aplikasinya,” Universitas Lambung Mangkurat, Banjarmasin, 2019.

C. M. Paris, Mathematical Models and Immune Cell Biology. New York: Springer, 2011.

Z. Marli, S. Rusdiana, L. Rahayu, and E. Fradinata, “Pengantar Biostatistika dan Aplikasinya pada Status Kesehatan Gizi Remaja,” Syiah Kuala Universitas, Banda Aceh, 2018.

Romes, H. Anton, and Cris., Aljabar linear elementer versi aplikasi edisi delapan jilid 2. alih bahasa: Irzam Harmein, Julian Gressando. Jakarta: Erlangga, 2005.

N. N. Putri and T. Muliawati, “Analisis Rantai Markov dalam Memprediksi Status Pasien COVID-19 di Indonesia,” Indonesian Journal Of Applied Mathematics, pp. 44–50, 2021.

S. Nawangsari, F. M. Iklima, and E. , P. Wibowo, “Konsep Markov Chains Untuk Mneyelesaikan Prediksi Bencana Alam di Wilayah Indonesia dengan Studi Kasus Kotamadya Jakarta Utara,” Depok, 2014.

Badan Pusat Statistik Provinsi Jambi, Indeks Harga Konsumen Kota Jambi 2021. Jambi: Badan Pusat Statistik Provinsi Jambi, 2022.

Badan Pusat Statistik Provinsi Jambi, Indeks Harga Konsumen Kota Jambi 2020. Jambi: Badan Pusat Statistik Provinsi Jambi, 2021.

Badan Pusat Statistik Provinsi Jambi, Indeks Harga Konsumen Kota Jambi 2019. Jambi: Badan Pusat Statistik Provinsi Jambi, 2020.

Downloads

Published

2023-09-29

How to Cite

kholijah, gusmi, & Fitriyani, F. (2023). Markov Chain Analysis in Predicting Consumer Price Index for the Food, Beverage and Tobacco Sector in Jambi City . JURNAL SINTAK, 2(1), 6–13. Retrieved from https://journal.iteba.ac.id/index.php/jurnalsintak/article/view/165