PENGAMANAN DATA MENGGUNAKAN ALGORITMA BASE64

Dita Puji Nafisah¹, Diva Rahma Syavana², Iin Maharani Akbar³, Jihan Salsabilla Berliana⁴, Naissha⁵

Institut Teknologi Batam

ditapujinafisah@gmail.com, divarahma192@gmail.com, iinmaharaniakbar@gmail.com, jihansalsabilah291@gmail.com, naisshadl10@gmail.com

Abstrak

Algoritma Base64 adalah metode pengodean yang umum digunakan untuk mengubah data biner menjadi format teks ASCII. Dalam algoritma ini, setiap tiga byte data dipecah menjadi blok-blok 24 bit dan dikonversi menjadi empat karakter teks ASCII menggunakan tabel karakter Base64. Base64 memungkinkan representasi data biner dalam bentuk teks yang dapat ditransmisikan atau disimpan dengan mudah. Algoritma ini memiliki berbagai manfaat, termasuk kemampuan untuk merepresentasikan data dalam format teks, kompatibilitas yang luas, dan perlindungan sementara terhadap akses tidak sah. Namun, Base64 bukanlah metode enkripsi sejati dan hanya memberikan tingkat keamanan yang terbatas. Oleh karena itu, jika keamanan yang lebih kuat diperlukan, langkah-langkah keamanan tambahan, seperti enkripsi yang lebih kuat, harus digunakan bersama dengan Base64. Meskipun demikian, Base64 tetap menjadi metode yang berguna dalam pertukaran data, URL encoding, dan situasi di mana data perlu dikodekan dalam format teks ASCII.

Key Words: Algoritma Base64, Keamanan data, ASCII

1. PENDAHULUAN

Keamanan data (data security) adalah Data security adalah praktik dan proses yang dilakukan untuk melindungi data dari akses yang tidak sah, penggunaan, atau perubahan yang tidak diinginkan. Data security berfokus pada melindungi integritas, kerahasiaan, dan ketersediaan data yang disimpan di dalam sistem atau perangkat. Tujuan dari keamanan data ini adalah untuk memastikan kerahasiaan, integritas, dan ketersediaan data, sehingga hanya orang yang berwenang yang dapat mengakses dan menggunakannya. Proses data security meliputi pengamanan data dengan menggunakan teknologi seperti enkripsi, akses

19

pengontrolan yang terbatas, sistem deteksi ancaman, dan keamanan jaringan. Sekarang ini pengguna teknologi informasi yang menggunakan komputer sebagai media nya sangat meningkat. Keamanan yang efektif dari suatu sistem tekhnologi informasi sangat diperlukan untuk kegiatan sehari-hari, masalah keamanan dan kerahasiaan merupakan salah satu aspek penting dari suatu pesan, data, atau informasi. Salah satunya citra, citra (image) merupakan salah satu bentuk multimedia yang penting. Citra menyajikan informasi secara visual dan informasi yang disajikan oleh sebuah citra lebih kaya daripada yang disajikan secara tekstual. Salah satu cara untuk mengamankan citra adalah dengan proses enkripsi, Enkripsi adalah proses mengubah plaintext menjadi teks tersandi.

Kemajuan teknologi yang semakin berkembang pesatnya mendorong masyarakat untuk terus menciptakan suatu terobosan baru disegala bidang disipin ilmu pengetahuan. Penggunaan sistem baru yang lebih praktis dan cepat pelayanannya serta dapat memberitahukan kenyamanan bagi pengguna adalah suatu tren tersendiri dizaman yang demkian modern. Oleh karena itu, jika keamanan yang lebih kuat diperlukan, langkahlangkah keamanan tambahan, seperti enkripsi yang lebih kuat, harus digunakan bersama dengan Base64. Meskipun demikian, Base64 tetap menjadi metode yang berguna dalam pertukaran data, URL encoding, dan situasi di mana data perlu dikodekan dalam format teks ASCII.

Base64 sejatinya bukan enkripsi, namun hanyalah sebuah standar penyandian (encoding). Kriptografi Base64 banyak digunakan di dunia internet sebagai media data format untuk mengirim data, ini dikarenakan hasil dari Base64 berupa plaintext, maka data ini akan jauh lebih mudah dikirim, dibandingkan dengan format data yang berupa binary. Dalam Encoding_Base64 dapat dikelompokkan dan dibedakan menjadi kriteria yang tertera.

ASCII adalah sistem standar yang digunakan untuk merepresentasikan karakter-karakter dalam bentuk kode angka. Setiap karakter dalam ASCII memiliki kode angka yang unik. ASCII mencakup huruf, angka, tanda baca, dan karakter khusus yang digunakan dalam bahasa Inggris dan beberapa bahasa lainnya. Ini memungkinkan komunikasi dan pertukaran data melalui komputer dan jaringan dengan menggunakan representasi numerik yang konsisten untuk setiap karakter.

Adapun table lengkap base64:

Bit	Desimal	Karakter	Bit	Desimal	Karakter
000 000	0	Α	100 000	32	g
000 001	1	В	100 001	33	h
000 010	2	C	100 010	34	i
000 011	3	D	100 011	35	j
000 100	4	E	100 100	36	k
000 101	5	F	100 101	37	1
000 110	6	G	100 110	38	m
000 111	7	Н	100 111	39	n
001 000	8	I	101 000	40	0
001 001	9	3	101 001	41	р
001 010	10	K	101 010	42	q
001 011	11	L	101 011	43	r
001 100	12	M	101 100	44	s
001 101	13	N	101 101	45	t
001 110	14	0	101 110	46	u
001 111	15	P	101 111	47	v
010 000	16	Q	110 000	48	W
010 001	17	R	110 001	49	x
010 010	18	S	110 010	50	у
010 011	19	T	110 011	51	Z
010 100	20	U	110 100	52	0
010 101	21	V	110 101	53	1
010 110	22	W	110 110	54	2
010 111	23	X	110 111	55	3
011 000	24	Y	111 000	56	4
011 001	25	Z	111 001	57	5
011 010	26	a	111 010	58	6
011 011	27	b	111 011	59	7
011 100	28	c	111 100	60	8
011 101	29	d	111 101	61	9
011 110	30	e	111 110	62	+
011 111	31	f	111 111	63	/

2. METODELOGI PENELITIAN

Dalam artikel ini, penulis menggunakan pendekatan penelitian deskriptif-analitis untuk membahas Algoritma DES dan penggunaannya dalam keamanan data secara umum. Metode penelitian meliputi studi literatur untuk memahami konsep dasar Algoritma DES, analisis konsep keamanan data, dan penerapan Algoritma DES dalam berbagai skenario. Penulis juga akan melakukan evaluasi keamanan algoritma ini dan menyajikan beberapa studi kasus penggunaannya dalam lingkungan nyata. Tujuan penelitian ini adalah menyajikan informasi komprehensif tentang Algoritma DES dan relevansinya dalam menjaga keamanan data di era digital yang kompleks dan rawan.

3. ANALISA DAN PERANCANGAN

Penerapan keamanan data transaksi dengan algoritma Base64 terdapat pada kode transaksi.

Misal kita ingin menyandikan teks "MAN"

a. Ubah huruf-huruf yang akan dienkripsi menjadi kode-kode ASCII

Text Content: M - A - N

ASCII: 77 - 97 - 110

Kode-kode ASCII tersebut diubah lagi menjadi kode biner

b. Text Content: M - A - N

ASCII: 77 - 97 - 110

Bit Pattern: 01001101 - 01100001 - 01101110

c. Bagi kode biner tersebut menjadi hanya 6 angka per blok dan berjumlaah kelipatan 4 blok.

d. jika angka biner tidak berjumlah 6 angka dan 4 blok maka akan ditambah kode biner 0 sehingga mencukupi menjadi 4 blok.

e. Blok-blok tersebut ubah kembali menjadi kode desimal (data dibaca sebagai index)

Text Content: M - A - N

ASCII: 77 - 97 - 110

Bit Pattern: 010011 - 010110 - 000101 - 101110

Index: 19 - 22 - 5 - 46

f. Hasil kode index tersebut diubah menjadi huruf yang ada pada index

Text Content: M - A - N

ASCII: 77 - 97 - 110

Bit Pattern: 010011 - 010110 - 000101 - 101110

Index: 19 - 22 - 5 - 46

Base64 Encoded: T - W - F - u

g. Jika nilai blok adalah hasil tambahan (0) maka hasil dari index tersebut bernilai '='

Text Content: M - "(Kosong)" - "(Kosong)"

ASCII: 77 - "(Kosong)" - "(Kosong)"

Bit Pattern: 010011 - 010000 - 000000 - 000000

4. KESIMPULAN

Algoritma base64 mampu melakukan pengamanan data text dengan mengenkripsi file text menjadi sebuah karakter acak dan mengembalikan data text dengan cara mendeskripsi dari hasil enkripsi menjadi file text kebentuk semula serta aplikasi kriptografi algoritma base64 mampu mengenkripsi file text lebih dari 6 karakter bahkan lebih dari 100.000 karakter menjadi chipertext dan mendeskripsi chipertext menjadi plaintext tanpa merubah

keasliannya tetapi terjadi kesalahan apabila text yang akan di enkripsi kurang dari atau sama dengan 6 karakter

REFERENSI

- I. P. P. H. W. M. H. R. Muntahanah4, "Pemanfaatan Perulangan Enkripsi Base64 untuk Pressensi QR Code pada absensi online," J. Kom., vol. 2, no. 2, pp. 519–528, 2022, [Online]. Available: https://doi.org/10.53697/jkomitek.v2i2
- Azlin, F. Musadat, and J. Nur, "Aplikasi Kriptografi Keamanan Data Menggunakan Algoritma Base64," J. Inform., vol. 7, no. 2, pp. 1–5, 2018.
- S. Supiyandi, H. Hermansyah, and K. A. P. Sembiring, "Implementasi dan Penggunaan Algoritma Base64 dalam Pengamanan File Video," J. Media Inform. Budidarma, vol. 4, no. 2, p. 340, 2020, doi: 10.30865/mib.v4i2.2042.